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• EXAMPLE: NASA Deep-Space Modulation Format
• residual carrier usually present
• data modulated onto square-wave subcarrier

• Reference Signal Requirements
• must be correlated with the desired signal
• must be uncorrelated with interference

BPF
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REFERENCE SIGNAL GENERATION

. . .

Adaptive
Array

Signal
Processing

Array output
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Note: if a residual carrier is not available, 
more complex signal processing often
yields a useful reference signal.
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COMPLEX VECTOR FORMULATION OF THE
LARGE ARRAY SIGNAL PROCESSING  PROBLEM
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THE “UNDESIRED” COMPONENTS:
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MAXIMIZATION OF SINR (known look direction)

EXAMPLE 1: IΦIΦΦ0Φ
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LARGE ARRAY SIGNAL PROCESSING

• Note that with optimum weights, the array output SNR
is N times the elemental  SNR, as with a PLL Array

• Need to determine “source direction” separately
• once source direction is determined, the optimum 

weights are also known
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optimum weight vector can be expressed as

and yields
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From (3), the SINR of the array output with optimum weights is:
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The maximum value of the SINR is achieved by the optimum 
weights         . When these weights are applied, the SINR of 
the output is equal to the sum of elemental SINR-s.

optW
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The optimum weight vector can again be expressed as

(4)
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EXAMPLE 3:  the general case:                            (Applebaum)nIu ΦΦΦ +=

The covariance matrix of the general undesired component
is Hermitian, therefore it can be diagonalized by a unitary 
transformation.  Let A be a unitary matrix, so that 

IAAAAAA === −− 1*1* ; TT

nnIIdd XAYXAYXAY === ,,

and define the “transformed” vectors as

These “transformed” vectors represent the original input 
vectors in a new, “rotated” coordinate system, and lead to
a minor conceptual modification to the system block diagram.
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Let the covariance matrix of the signals in the rotated 
coordinate system be designated by       , defined as
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Maximization of SINR for the general case:

The solution for the case of a diagonal covariance matrix has 
already been solved in Example 2: the optimum weights are 
proportional to the ratio of source-direction vector (in the rotated 
coordinates) to the total noise power. Defining the “rotated 
source-direction” as                     , the optimum weights can be 
obtained from equation (4) by inspection:

dAUQ =

AWV =
duopt QΨV 1−=

But implies that optopt VAW 1−= , so we can write

][][ using  ;][         

][][
111111

1111

−−−−−−

−−−−

==

==

ABCABCUAΨA

UAΨAUAΨAW

du

duduopt

(5)



V. Vilnrotter 20

LARGE ARRAY SIGNAL PROCESSING

Since T
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*AΦAΨ =

u
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, it follows that

Substituting into (5) yields the optimum weight vector that
maximizes SINR for the general case:

duduopt UΦUAΨAW 111 ][ −−− ==

Since a constant scale factor,     , applied to the weight vector 
does not change the SINR, we can also write:

µ

duopt UΦW 1−= µ
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PROCESSORS FAMILIAR FROM THE LITERATURE:

1.  Conventional Beamformer: 

2.  NAME (noise-alone matrix inverse):

3.  SPNAMI (signal-plus-noise matrix inverse):

dopt UW )constant(=

duopt UΦW 1−=

dopt UΦW 1−=

Both NAME and SPNAMI achieve the same SINR
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THE EQUIVALENCE OF USING
TO MAXIMIZE SINR (Applebaum-Compton notation:          ) 
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The inverse of      can be calculated with the help of the
following  Matrix Inversion Lemma: if B is a nonsingular

matrix, Z is an           column vector, and     is a scalar,
then the inverse of                                  is given by

Φ

NN × 1×N β
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Applying this lemma to     , we find its inverse asΦ

1*111 −−−− −= u
T
dduu ΦUUΦΦΦ α

Evaluating      and substituting, after some algebra we get

*1*1 constant)( dud UΦUΦ −− =

Since multiplying the weight vector by a constant does not affect
the SINR, these two weight vectors produce identical SINR.

α
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Eigenvector Approach from linear algebra:
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Recall that the SINR can be expressed as the ratio of two
“quadratic forms”:

The ratio of two quadratic forms attains its maximum value
when W is the eigenvector associated with the largest 
eigenvalue of                   .  This approach will be detailed
and demonstrated in Part II.
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CLOSED-LOOP ESTIMATION OF OPTIMUM WEIGHTS:
1. THE (MODIFIED) APPLEBAUM LOOP:  consider a single

branch of the array, with weights determined as a real-time
correlation of the array output with each elemental signal
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PWΦW ˆˆ kk
dt

d ≅+

2.  THE LMS LOOP: if the differential equation describing
the APPLEBAUM loop is modified slightly, we obtain the 
differential equation for the LMS loop: 
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Needs reference signal, but not the desired signal direction.

(8)
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RELATIONSHIP BETWEEN APPLEBAUM AND 
LMS ARRAYS

*** )]()([)]([But  .ˆˆ
dtrtsEtrEkk

dt

d
UXPPWΦW ==≅+

*ˆ
dkk

dt

d
UWΦW µ≅+

Weights of the Applebaum array satisfy the differential equation

Weights of the LMS array satisfy the differential equation

It follows that if                   , the LMS and Applebaum arrays will
perform identically, both maximizing SINR. However, the LMS
array does not need to know the source direction to track the signal.

PU ˆ* =dµ
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3.  THE DISCRETE VERSION OF THE LMS LOOP:
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the estimates, we get
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Next, approximate the derivative with the difference

LARGE ARRAY SIGNAL PROCESSING

t
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where           is a sample of the i-th weight at time                .)(nwi tntn ∆=

Rewriting (9) in terms of the difference yields

tknnxnwnw iii ∆≡=−+ γεγ ;)()()()1( *

which can be put into a form known as the “LMS algorithm”

)()()()1( * nnxnwnw iii εγ+=+

where                              .)()()( nznrn −=ε
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SOME  PROPERTIES OF THE LMS ALGORITHM:

• Needs a reference signal (correlated with the received signal)
• Does not need to know the source direction
• Complexity per update: order N (for N antennas)
• Magnitude of updates diminish as output signal “approaches” 

the reference signal (error approaches zero)

)()()()1( * nnxnwnw iii εγ+=+
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THE “CONSTANT MODULUS ALGORITHM” (CMA)

)()()()1( * nnxnwnw iii εγ+=+

Recall the form of the discrete LMS algorithm derived before:

If we let ( ) )(|)(|)( 2
0

2 nssnsn −=ε , the resulting algorithm

is known as the CMA:

( ) )()(|)(|)()1( *2
0

2 nsnxsnsnwnw iii −+=+ γ
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SOME PROPERTIES OF THE CMA:

( ) )()(|)(|)()1( *2
0

2 nsnxsnsnwnw iii −+=+ γ

• The CMA does not need either a source direction or a 
reference signal, only the “target” power of the desired source

• Any change in source power is attributed to interference, which
the CMA attempts to cancel

• Order N complexity (multiplies per update)
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SUMMARY OF REPRESENTATIVE “ORDER N” 
ALGORITHMS FOR DSN APPLICATIONS

• LMS ALGORITHM:
• Needs a reference signal (filtered residual carrier, or other

correlated reference derived via signal processing)
• Adaptively maximizes SINR (nulls interference) 

• CMA:
• Needs estimate of desired signal power only
• Adaptively maximizes SINR (nulls interference)

OPEN ISSUES: convergence rate under “realistic” DSN 
spacecraft tracking conditions
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NORMALIZED CMA (M. Srinivasan):
• New algorithm, needs estimate of average signal power
• Can phase up array with “noise-like” signals from quasars

PART II:  REAL-TIME DEMONSTRATIONS

LMS ALGORITHM (F. Pollara):
• Real-time convergence from initial weight vector 

to optimum, with and without noise 
• Demonstration of gradient descent (min. of error surface)

EFFICIENT EIGENVECTOR ALGORTHM (C. Lee):
• Based on matrix theory result on maximization of ratio

of two quadratic forms
• Efficient, iterative implementation  


